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Abstract We present detailed investigations of vibrational modes in a hierarchy of rational (or 
commensurate) appmximants to icosahedral quasicrystills. based on eact diagonalization of ule 
dynamical mauix and m i o n  calculations of the vibralional specbum. Qurnsuls demonspate 
the existence of well defined longitudinal and " v e r s e  acoustic modes with isotropic dispersion 
relations in the vicinity of q u a s i p i d i d l y  disbibukd special p i n s  in wavenumber space, the 
T points' of the recipmcal quasilattice. Stationary eigenmcdes ax found mud other high- 
symmeby p i n s  in reciprocal space corresponding to quasi-Brillouin zone boundaries. We 
show that shictly localiled ('confined') modes exist and that their origin is a local topological 
frustration. i.e. in a local deviation from ideal icosahedral packing. 

1. Introduction 

For several decades it has  been known that there are phases of condensed matter intermediate 
between periodic crystals and topologically disordered materials, in the sense that they show 
a diffraction pattem with sharp &peaks, but no translational symmetry. In this case the 
diffraction vectors are of the form 

with N > 3, i.e. the diffraction panem may be indexed by integer indices, but only in a 
basis where the dimension is higher than that of the physical space. The first examples were 
the incommensurate phases, but the more recently discovered quasicrystals 111 excited more 
interest because the point-group symmetry of the d i k t i o n  pattern is a non-crystallographic 
group, like the icosahedral group with twelve fivefold axes. 

Many physical properties of the condensed phases are closely related to the spectrum 
of the Hamiltonian. Of particular interest are the density of states and the behaviour of 
the wavefunctions (localized, extended, chaotic and so on). Are the eigenstates of the 
quasiperiodic Hamiltonian extended, as in crystals, or localized, as in amorphous solids 
when the disorder exceeds a critical value? The properties of the eigenstates will depend 
on two characteristic properties of the quasiperiodic lattices: one is their non-periodicity 
and the other is expressed by the Conway theorem 121. This theorem stam that any finite 
section of a quasicrystal will be repeated quasiperiodically an infinite number of times. 
The non-periodicity will cause the eigenstates to be localized, while the Conway theorem 
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leads to extended states. In essence, this scenario has been confirmed by calculations 
of the eigenstates of onedimensional (ID) quasilattices 13-61. It was shown that most 
eigenstates are critical, i.e. neither extended nor localized, and that the power-law decay of 
the eigenstates is caused by the competition between non-periodicity and self-similarity. 

Less is known about the spectrum and the eigenstates of two- and three-dimensional 
quasicrystals. One of the reasons is that the renormalization-group analysis of ID 
quasiperiodic chains cannot be extended to higherdimensional systems. This means that 
investigations of the eigenspectrum have to rely on numerical calculations. Numerical 
studies, however, can be performed only for finite systems constructed such as to 
approximate the infinitely extended quasicrystal as closely as possible. Most investigations 
concem 2D Penrose lattices with very simple model Hamiltonians. It has been shown that, 
unlike for the ID quasicrystal, the density of states is not a Cantor set with a hierarchical gap 
structure, nor does it have large gaps [71. However, in spite of the finite bandwidth, most 
of the eigenstates are critical and show a behaviour similar to power-law decay. It has also 
been shown that propagating eigenstates (i.e. states with a well defined wavevector) can 
exist in the vicinity of certain quasiperiodically arranged special points in wavenumber space 
[8-10] (the r points of the quasilattice) and that there can be strictly localized eigenstates 
associated with certain highly degenerate eigenvalues of the quasicrystal [ I  I, 121. 

The fundamental importance of the character of the eigenstates of quasiperiodic lattices 
has also stimulated many experimental investigations [13-17]. Here inelastic neutron- 
scattering measurements on single grains of icosahedral alloys are of particular importance 
because they allow one to study the dispersion relations of the collective excitations [ 15-17]. 
These studies confirm the existence of propagating phonon modes near strong Bragg peaks, 
with linear isotropic dispersion relations [ 15,161. In addition, halfway between strong Bragg 
peaks stationary points are found, corresponding to high-symmetry points at the boundary 
of a quasi-Brillouin zone. 

In this paper we present an investigation of vibrational excitations in the icosahedral 
alloy AI-Zn-Mg. The model for the icosahedral structure is based on a three-dimensional 
Penrose tiling constructed using the projection method [ 18,191 and the atomic decoration 
proposed by Henley and Elser 1201. The vibrational eigenstates are calculated for 
commensurate (or rational) approximants to the quasicrystal, both by straightforward 
diagonalization of the dynamical matrix and using a Lanczos-type recursion algorithm 1211 
for the determination of the vibrational density of states and the vibrational Bloch spectral 
functions. From the vibrational spectral function the dynamical structure factors and inelastic 
neutron scattering intensities may be calculated. The calculation of the spectra function 
confirms the existence of propagating collective excitations in the vicinity of the Bragg 
peaks of the quasilattice, for both longitudinal and transverse excitations. The spectral 
weight of these acoustic phonons scales with the intensity of the corresponding B r a g  peak. 
While the acoustic modes show nearly linear dispersion, very weak dispersion is predicted 
for the higher-energy modes, especially in the vicinity of certain high-symmetry points 
in wavenumber space. The weak dispersion is compatible with an enhanced degree of 
localization of these modes. 

The most direct information on the character of the eigenmodes comes from an 
explicit calculation of the eigenvectors of the dynamical matrix. The analysis of the 
eigenvectors allows one to identify several strictly localized eigenmodes and to establish 
a clear correlation between localization and a local frustration of icosahedral symmetry in 
the quasicrystal. However, due to the Conway theorem, these local modes are repeated 
infinitely often in the quasicrystal. Therefore, it may be more appropriate to speak of 
‘confined’ instead of localized modes. 

J Hafner and M KrajiV 
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Our theoretical results show all the characteristic features detected in the experimental 
investigations [I5171 and offer a consistent explanation for these observations. Some 
preliminary results have been published in two short papers [ 12,221. 

2. Structural modelling 

In the following we describe the structural modelling of the icosahedral AI-Zn-Mg alloy 
based on an atomic decoration of the 3D Penrose tiling, the construction of commensurate 
(or rational) approximants appropriate for the numerical calculation of the vibrational 
excitations, as well as the construction of the modulated quasicrystals where the atoms 
are in equilibrium under a given set of interatomic forces. We shall give only a brief 
outline; more details may be found in a previous publication [23]. 

2.1. Ideal quasicrysials 

In the projection method [ 18,19,23,24], the 30 Penrose lattice is generated by projecting 
a ‘strip’ of a 6~ hypercubic lattice L6 onto the physical space E3. The strip is defined by 
extending a unit cube in L6 parallel to E3. The orientation of E3 is defined in such a way 
that the projection of a star of orthogonal basis vectors in Lg forms an icosahedral basis 
in E3, e, = C(0, 1, r )  + cyclic permutations (e), I = I. 2.3; el = C(0, - I ,  r )  + (CP), 
I = 4.5.6 where t = ( I  + &)I2 is the golden mean and C is a constant normalizing the 
basis vectors to unity. The projection of a 6D unit cube onto the 3Dspace E; perpendicular 
to E )  is a rhombic triacontahedron, the acceptance domain for vertices of the quasilanice. A 
vertex of Lg belongs to the quasilattice only if its projection onto E; falls into the acceptance 
domain. 

For the icosahedral alloys of the AI-Zn-Mg class the rhombohedral units (prolate (PR) 
and oblate (OR) rhombohedra) are decorated as proposed by Henley and Elser [ZO]: AI or 
Zn atoms occupy the vertices and the mid-points of all edges of the structural units. two 
Mg atoms a ~ e  placed along the trigonal axis of each PR. A special composite unit is the 
rhombic dodecahedron (RD) formed by two OR and two PR. A decoration has been pmposed 
for the fourfold vertex within each m: four Mg atoms are placed on the edges originating 
from this vertex; altogether eight Mg atoms form a slightly distorted hexagonal hipyramid 
inside a RD. 

2.2. Commensurate quasicrystals 

A commensurate (or rational) approximant to the quasicrystal is obtained if, in the 
icosahedral basis in E;, e’, = C‘(0, -r, -1) + (cP), I = I .  2.3; e’, = C’(0, r ,  1) + (cP), 
1 = 4,5,6, the golden mean r is replaced by a rational number r, = F.+t/F., where the F, 
are Fibonacci numbers (Fo = 0. F, = I ,  F,+, = F, + F.-I). The icosahedral basis in E3 is 
unchanged. The triacontahedral acceptance domain is deformed, but its topology remains 
unchanged The lattice created by this projection is a periodic Penrose lattice (PPL) with 

cubic symmetry [W,241. The lattice parameter of the cubic cell is a, = ,/=Fa, 
where aR is the length of the edge of a rhombohedral smctural unit. The number of 
constituent rhombohedra is NR = 4Fk+3. We shall denote the commensurate approximants 
by Fn+l/Fn.  the pair of the Fibonacci numbers corresponding to the approximation r, to 
the golden mean r. For the lowest-order approximants, 1/1. VI, 3/2 and 5/3, the number 
of rhombohedra (equal to the number of vertices) is NR = 32, 136,576 and 2440, with the 
Henley-Elser decoration this corresponds to Ns =: 162,688, 2920 and 12380 atoms in the 
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cubic cell, respectively. Note that the 1/1 approximant is identical to the (AI, Zn)lgMg,z 
Frank-Kasper phase [25] and that very recently the 3/2 approximant of icosahedral Al- 
Zn-Mg was observed experimentally during crystallization of the metastable quasicrystal 
D61. 

23.  Modulated quasicvstals 

In an infinitely extended quasicrystal the environment of each atomic site is unique. Hence, 
for a long-range potential, the forces acting, for example, on an Mg atom inside PR will 
be different in each PR. Therefore if one s t a m  with a regular decorated Penrose tiling as 
a starting configuration and relaxes the system to a minimum of energy, one obtains a 
structure in which all atoms are displaced. This is illustrated in figure 1 for the example 
of the 5/3 approximant. However. if one calculates the Fourier transform of the relaxed 
configuration, one obtains a diffraction pattern with the same point-group symmetry as the 
ideal tiling itself. Therefore, the relaxed structure may be considered as a displacively 
modulated quasicrystal 123, U]. 

In the present work, the relaxation has been performed using molecular dynamics 
(MD) and pseudopotential-derived interatomic forces [281. For later use we note that the 
pseudopotential-derived pair forces describe the phonon frequencies of the crystalline metals 
Al. Zn, Mg and of crystalline and amorphous Mg-Zn alloys with an accuracy of typically 
five per cent. The MD relaxation was started at mom temperature. Then the system was 
cooled to very low temperature, and finally the equilibrium atomic sites were determined 
using a steepest-gradient energy minimization. For a detailed discussion of the displacively 
modulated structures, see [23]. 

2.4. Reciprocal quasilattices 

TO the 6D hypercubic lattice L g  belongs a 6D reciprocal lattice La. A 3D reciprocal lanice for 
thequasicrystal is defined by a projection of L: on 3D wavevector space [29]. Projections of 
high-symmetry points of L; define special points of the 3D reciprocal quasilattice. Special 
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Figure 1. A projection of the ideal (a) and the displacively modulated ( b )  swcture of the Si3 
approximan1 on the (x. y )  plane. ?be edges of lhe Penrose tiles are drawn. Circles represent 
AI (a) atoms; crosses represent Mg ai". 
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points are characterized by a generalized structure factor. Of particular interest are the r 
points, i.e. the projections of the (0000oo) points of the hypercubic lattice Lz. In this 
case, the generalized structure factor reduces to the conventional structure factor. Figure 2 
shows the structure factor in a plane perpendicular to a twofold axis, calculated for the 5/3 
approximant to icosahedral AI-Zn-Mg. The size of the spots is scaled with the square of 
the structure factor. This figure can be considered to represent a weighted distribution of the 
r points in wavenumber space. Two points should be noted. First, the structure factor is 
virtually discrete, although the reciprocal quasilattice is dense. Second, the structure factor 
is a quasiperiodic hnction in k space. 

- 
40 

20 

0 

2 Figure 2. Smclure factor for the 513 approximan1 U) 
icosahedral AI-Zn-Mg in a plane perpendicular 10 a . . . .  twofold axis. The sile of each spot is pmporfional 
to the intensity of h e  Bragg  pea!^ The wavevextar 
Ikl is given in units of (Zn/u), where a = 59.82A 
is the period of the approximat The direclions of 
the Iwofold. fhefold and fivefold symmehy axes are 

- . .  - . _.. . . i l  2 - 
0 20 40 6 0  60 

~ t l  i n  units [ ~ n / a ~  marked. 

In an icosahedral lattice there exist eight types of special points denoted as r, R. X,, 
M5, X3, M3. Xz. and MI. Representative wavevectors are (in six-dimensional notation 
with h=1/2) (OOOOOO). (hhhhhh), (h00000). (Ohhhhh), (hhhOoo), (Ooohhh), (hhoooO), and 
(OOhhhh), respectively. The point-group symmetry is the icosahedral group Yh for r and 
R points. and D5d, D3d or Du, for the other special points, according to whether the suffix 
is 5, 3 or 2, respectively. Graphical representations of the generalized structm factors 
associated with the special points are given by Niizeki and Akamatsu 1291. Here we only 
note that the generalized structure factor for the R point has intensities on the fivefold and 
threefold axis, but vanishes on the twofold axes, whereas the generalized structure factor 
for XZ and MI points has intensities on the twofold axes, but not on the other symmetry 
axes. 

3. Calculation of the vibrational eigenstates 

The normal modes of vibration of a solid material (crystal, quasicrystal, glass) are given in 
the harmonic approximation in terms of the eigenvalues and eigenvectors of the real-space 
dynamical matrix 

determined by the atomic masses mi and the force constant matrix 0 



2494 

given by the second derivative of the pair interaction energy with respect to the Cartesian 
components U/. of the displacements of the ith atom from its equilibrium position 4. In 
(2) the sum over k ( u )  runs only over the sites & occupied by U atoms. Here the dynamical 
matrix has been written for a binary alloy. As, according to all evidence, AI and Zn atoms 
are distributed at random in i-AIZnh4g. we shall treat the quasicrystal as a pseudo-binary 
system, A =AI or Zn, B = Mg. 

The 3N eigenmodes of an N-particle system are characterized by the eigenvalues o: 
and the eigenvectors e,(&) of the dynamical matrix. 

3.1. Direcf diagonalization 

The straightforward approach consists in a direct diagonalization of the dynamical matrix. 
It is clear that this can be done only if the infinitely extended quasicrystal is replaced by a 
finite system. In our case we choose the commensurate quasicrystals with periodic boundary 
conditions. In this case, the dimension of the dynamical matrix is 486 x 486, 2064 x 2064 
and 8760 x 8760 for 1/1, 2/1 and 3/2 approximants, respectively. It is clear that, even 
on present-day computers, direct diagonalization and calculation of all eigenvectors e,@,) 
will be possible only up to the 2/1 approximant. The vibrational density of states is then 
given in terms of the statistics of the eigenfrequencies: 

J Hafner and M Krajff 

n ( w ) = C A ( w - o , ) .  (3) 
L. 

The character of the eigenstates is described by the participation ratio P [301: 

where eu(R,) is the eigenvector of the mode K for atom j with mass Mi. For an extended 
eigenstate P .., 1, whereas for a strictly localized eigenstate P is of order (I,"). 

32. Kbratianal Green functions 

Experimentally, the information on the vibrational eigenmodes is contained in the differential 
scattering cross section per unit solid angle and energy. According to the van Hove scattering 
law, the coherent cross section is proportional to the scattering function or dynamical 
structure factor S(k, o) [31]: 

where k is the wavevector difference between the incoming and scamred neutron, and 6 is 
the scattering length of the nucleus: S(k, w )  may be expressed in terms of displacement- 
displacement correlation functions: in a one-phonon approximation we have [32] 

Here exp(-2W) is the DebyeWaller factor and U&) is the displacement of ith atom 
from its equilibrium position at time t. The angular brackets indicate thermal averaging. 
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The displacement-displacement correlation functions may be calculated in terms of the 
vibrational Green functions G.p(ij, wz)  (n(o) is the Bose occupation function) 

the G,p(ij, 0') being defined as the inverse of the resolvent operator: 

Gmp(ij, 0') = ( 0 2 S i j S m f i  - &,fi(ij))-'. (8) 

Hence the central task is the calculation of the vibrational Green function. The recursion 
method proceeds by tridiagonalizing the dynamical matrix, a diagonal matrix element of 
the Green function Gae(ii, 02) is then calculated in terms of an infinite continued fraction. 
For example 

defines a local density of states on the site i, for vibrations polarized along the IY direction. 
A Bloch spectral function fe(k, 0) for vibrational states with wavevector k and polarization 
vector e may be defined as 

i.e. as the diagonal element of the vibrational Green function in a Bloch state. In terms 
of the Bloch spenral function, the dynamical structure factor may be written as (note that 
U(&) ~ e i / + K )  

This shows that the neutron-scattering law may be calculated from the Bloch spectral 
functions. For a binary or pseudo-binary system, partial spectral functions f$"(k) may 
be defined by restricting the atomic displacements to the sites occupied by the atom of a 
particular type. Partial dynamical structure factors S,,,(k) are obtained by multiplying the 
spectral functims with the thermal occupation and Debye-Waller factors: 

The total dynamical structure factor is given in terms of a weighted average over the partial 
structure factors 

(b)2S(k, 0) = [C,4b:sAA(k, 0) + ~ = ~ A ~ S S A B ( ~ ,  0) + csbiSsa(k, W)1 

(13) 

where the bA, bs, C A  and CB are the scattering lengths and concentrations of the A and B 
atoms, respectively. 

Alternatively. the partial dynamical structure factors may be mcast in terms of partial 
dynamical structure factors SNN(~, a). S N C ( ~ ,  0) and Scc(k, 0) describing the dynamical 
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fluctuations in the number density (NN) and the concentration (E), as welt as the 
corresponding cross term [33]. The total dynamical structure factor is then given by 

In the present work, we have used the recursion method [21] to calculate the vibrational 
density of states and the partial spectral functions. The recursion method leads to a 
representation of these quantities in terms of an infinite continued fraction. Termination 
of the continued fraction after L levels leads to a spectrum consisting of L weighted 6 
functions. Various methods have been proposed to extrapolate the continued fraction to 
L -+ M and to produce a smooth spectrum. Here we use the ‘termination’ procedure 
proposed by Lucchini and Nex [34]. 

For a crystal, the S function peaks of the spectral function at the poles of the resolvent 
operator define propagating collective excitations with wavevector le, polarization e and 
frequency U. In a recursion calculation, the termination of the continued fraction after L 
exact levels leads to a finite resolution of the spectrum. The resolution is given roughly by 
the width of the vibrational band divided by the number of exact levels. Here, we calculated 
the spectral functions for the 5/3 approximant with 12380 atoms, using 50 recursion levels. 
The maximum frequency is about hw a 40meV, leading to a resolution better than 1 meV. 
Peaks in the spectral function that are well defined on this scale may be taken to represent 
propagating collective modes with a well defined le vector. 

Besides the spectral function, we calculated the total and partial vibrational DOS, n(w) 
and nu(@). The Dos may be calculated by averaging over a set of local DOS ni&), but a 
more efficient procedure is to calculate the diagonal matrix element of the Green function 
for an incoherent vibrational state (i.e. for a state where the phase exp(i&), $( E (0, h)) 
at site i is a random variable [ 3 5 ] .  Again the statistics can be improved by taking an 
average over independent incoherent states; in our calculations we used between five and 
ten random states for each Dos. We note that we have used a similar technique to describe 
the dynamical properties of glassy alloys [35,36]. 

4. Vibrational density of states 

The vibrational DOS calculated using the recursion method for the 2/1, 3/2 and 5/3 
approximant, together with the result obtained by exact diagonalization of the dynamical 
matrix for the Z/l-approximant is shown in figure 3(a). Figure 3(b) shows the decomposition 
of the Dos into the AI(&) and Mg contribution. The result obtained by exact diagonalization 
is in principle a series of 6 functions. To allow a comparison with the recursion method 
calculation, the result is given in the form of a histogram with a bin-width of 1 meV, 
comparable to the resolution of the recursion calculation. 

We find that the exact diagonalization confirms the result of the recursion calculations 
and that the DOS converges rapidly in the hierarchy of the approximants. If there is any 
systematic change at all, than it consists in a slight sharpening of the maxima in the Dos 
at 10. 16, 26 and 39meV (the spiky StNCtUreS at the upper band edge are associated with 
localized modes, see below). Similar characteristic maxima in the DOS have been found 
by Suck [41 in icosahedral Al-Cu-Li. The investigation of the spectral function will allow 
us to associate the DOS maxima with stationary states at the high-symmetry points of the 
quasi-Brillouin zone. 

Investigations of the vibrational DOS for the 3D-PPL with springconstant models using 
exact diagonalization for the interatomic forces have been presented by Los and Janssen 
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0 10 20 30 4 0  50 60 
hw ( m e V 1  (b) 

Fwre 3. (0) Vibrational density of states for the U1 approximant (dotied curve). 3R (broken 
curve) and Sf3 approximant (full curve) to the icosahedral phase. calculated using the recursion 
method. The histogram shows the result obtained by exact diagonalization of the dynamical 
matrix for the 2Il-approximanL (6) Total and partial vibrational density of states for the 513 
approximant. Full curve: total DOS: brokm curve: AI(&); dotred curve: Mg. 

1371. They also find a rather rapid convergence of the Dos in a hierarchy of commensurate 
approximants, but for the undecorated Penrose lattice the structure of W S  is less pronounced. 
Los and Janssen also performed a calculation for a model structure for i-AIMn proposed 
by h o t  and co-workers [38] and Lennard-Jones forces. The result is similar to that for 
the undecorated Penrose lattice, with a wide frequency region where n(w) IX wz, apart from 
small structures that can be interpreted in terms of van Hove singularities of the complex 
PPL. This result differs substantially from the DOS with well defined vibrational 'bands' 
predicted by our calculations for i-AIZnMg and from the neutron-scattering results of Suck 
and co-workers [13,14,39] for i-AICuLi, i-AIPdMn and i-AICuFe. 

The decomposition of the vibrational DOS into the AI(Zn) and Mg contributions shows 
that the low-frequency part of the spectrum is dominated almost entirely by the vibrations 
of the AI(Zn) atoms decorating :he framework of the Penrose lattice. The AI(&) motions 
also dominate the high-frequency end of the spectrum. The Mg vibrations are concentrated 
around the Centre of the DOS. 
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Figure 4. Pariial vibrational spectral functions ftB(k,(U). A ,  E=Al(Zn) ,  Mg (0) for 
longitudinal excitations pmpagating in the direction of a lwofold symmetry axis. falculated 
for the Si3 approximart using the recursion method. (b)  The parrial Bhatia-Thonon spectral 
function fFNCk. w )  for dewily fluctuation propagating in the same direction. 
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5. Vibrational spectral function 

The partial vibrational spectral functions have been calculated for the 1/1, 2/1, 3/2 and 
5/3 approximants. The results indicate a rapid convergence with increasing period of 
the approximant. Here we present only the results for the 5/3 approximant, where the 
characteristic structure is best observed. Figure 4(a) shows the partial spectral functions 
ftB(k, o) for longitudinal excitations propagating along a twofold symmetry axis ( A  = 
AI(&), B =Mg); (b) shows the Bhatia-Thomton partial spectral function for longitudinal 
density fluctuations, fLNN(k, o), for k along the same symmetry direction. The spectral 
functions f F ( k ,  o) and fLNC(k, w)  for concentration fluctuations and coupled density and 
concentration fluctuations are not shown, because they have low amplitudes and only very 
little structure. The important result is the existence of several series of sharp inelastic peaks 
originating from the most intense Bragg peaks (the r points of the reciprocal quasilattice). 
These peaks represent propagating long-wavelength acoustic excitations (A = 2n/Iql, with 
q = k - G, where G is the wavevector of the r point). For the density-density spectral 
function the intensity of these modes is proportional to the intensity of the Bragg peak (note 
that since bAtIa, = 0.512 x cm and bM8 = 0.52 x 10-’2cm [40], the density4ensity 
spectral function is almost identical to the weighted average for neutron scattering, cf. 
(18)). In the partial spectral functions the intensity of these modes is modulated according 
to the value of the partial static structure factor. The propagating longitudinal excitations 
are well defined for energies up to about IOmeV. At higher energies, the spectrum is 
much more complex, but there is still a pronounced Ikl dependence of the vibrational 
frequencies. The AI(Zn) vibrations contribute to the entire band, whereas the intensity 
of the Mg vibrations is concentmted in the acoustic region and in the interval between 
20-40meV. The densitydensity spectral function describes essentially the dynamics of 
an average atom, the concentration-concentration spectral function describes out-of-phase 
vibrations of AI(Zn) and Mg atoms. The spectral function fzc(k. U )  corresponds to special 
modes with rather high frequencies at the origin. However, the contribution of these. modes 
to the total spectral intensity is rather small. 

Figure 5 shows the partial spectral functions for transverse modes propagating along a 
twofold symmetry axis (the x direction) and polarized in the y direction. Again we find 
propagating collective excitations around the principal Bragg peaks, again with intensities 
proportional to those of the diffraction spots. Identical results are found for excitations 
polarized along the z direction. 

Similar results are obtained for modes propagating in other symmetry directions. 
Figures 6 and 7 show the densitydensity spectral functions fLm(k. o) fork  vectors along 
the fivefold and the threefold symmetry axis. Again, well defined acoustic modes are found 
around each r point. For wavevectors along the fivefold symmetry direction, the results 
are rather difficult to interpret, because close to the two most intense Bragg peaks relatively 
intense satellites are found (see figure 3). The acoustic modes originating from these closely 
spaced r points intersect each other, resulting in doubly peaked spectral functions. Along 
the threefold symmetry axis the Bragg peaks have only relatively low intensity (figure 2); 
this is reflected in the vibrational spectral functions (figure 7). The well defined peak at 
Ikl = 30(2rr/a) and ho zz IOmeV belongs to acoustic modes originating from an intense r 
point on the twofold symmetry axis. Finally, we show in figure 8 the density-density spectral 
function calculated along a general off-symmetry direction. This direction was determined 
as a vector equal to one third of the sum of vectors directed in twofold, threefold and 
fivefold symmetry directions. Propagating acoustic modes are found around the origin, but 
not at higher wavenumbers since there are no r points on this line. For very large /El 
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k (1 x (twofold symmeuy axis) and polarization e I\ y. 

vector the spectral function approaches the form of the WS. This is similar to amorphous 
alloys [35,36]: very short-wavelength excitations resemble incoherent states, unless strong 
coherency effects appear, e.g. by umklapp scattering close to r points. The absence of 
sharply defined acoustic excitations for wavevectors oriented in off-symmetry directions 
explains the differences observed in the dynamical structure factors of polygrained [39] and 
single-grained [ 15, 161 quasicrystals. 

6. Dispersion of collective excitations 

Dispersion relations for collective excitations may be defined in terms of the positions of 
the peaks in the spectral functions. Here we use the density-density spectral functions to 
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Figure 6. Density-densily vibrational spectral function f F N ( k . o )  for longitudinal excimtions 
with wavevecmIs along a fivefold symmetry axis. 
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Figure 7. Same as figure 6. but for the k vector oriented along a threefold symmeuy axis. 

Figure 8. Same as figure 7. but for the wavevector orienred in an off-symmetly direction. See 
text. 

define the dispersion relations. As f N N  is virtually identical to the total spectral functions 
calculated with the weights determined by concentration and neutron-scattering lengths (see 
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(18)). these dispersion relations should be representative for the results that can be obtained 
by inelastic neutron scattering. Figure 9 shows the dispersion relations for the longitudinal 
modes along the twofold and fivefold symmetry axes. Figure IO shows the dispersion 
relations for the transverse excitations along a twofold symmetry axis. The results show a 
very characteristic pattem. 
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Figure 9. Dispersion relations for longitudinal mllective excitations pmpagatingalong a twofold 
( U )  and a fivefold (b) symmetry axis. A dol indicates the position of a peak in the spectral 
fundon; Ihe size of the dot scales with the height of the &. For the twofold axis the 
positions of the high-symmeuy pints Xz and Ma is marked. 

First, around the r points the dispersion relation of both longitudinal and transverse 
excitations are linear to a very good accuracy. The slope of the dispersion relations is the 
same at each r point, independent of the direction of the wavevector and for transverse 
modes also independent of polarization. The longitudinal velocity of sound calculated from 
the slope of the dispersion relation is CL = 5.6 x IO5 cm s-l, the transverse velocity of sound 
CT = 2.4 x 105 cm s-’. The prediction of isotropic dispersion relations for acoustic modes 
agrees very well with the neutron-scattering results of Goldman and co-workers [ 15,161. 
The elastic isotropy of the icosahedral alloy stems from the fact that the symmetry of the 
icosahedral point-group is higher than cubic 1411. 

Second, at higher energies the phonon dispersion relations are stationary around certain 
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high-symmetry points of the reciprocal quasilattice. In addition, maxima of the dispersion 
relations are found at some of the r points. On the twofold symmetry axis there are X2 
and MZ points. They are marked in figures 9(a) and IO. For all other symmetry points the 
intensity of the generalized structure factor is zero on the twofold axis [29]. On the fivefold 
axis possible symmetry points are R, M5 and X5. It is tempting to draw an analogy between 
the stationary dispersion relations at the special points of the quasilattice and the behaviour 
of phonon dispersion relations at the Brillouin zone boundary of crystals. In some cases 
a special point is situated just halfway between two r points and in this case the analogy 
seems to be complete. However, there are also special points that cannot be interpreted in 
this simple way, and we have to remember that the reciprocal quasilattice is dense. 

Stationary modes are found at energies of about IOmeV, 16meV. in the range 20- 
30meV, and around 40meV. Hence there is a clear correlation between the peaks in the 
vibrational ws and the stationary modes. 

7. Inelastic neutron scattering intensities 

The total dynamical structure factor S(k, w )  describing the intensity of inelastically scattered 
neutrons may be calculated by multiplying the vibrational spectral functions with the thermal 
occupation factor, the Debye-Waller factor (calculated from the partial DOS) and the square. 
of the wavevector. Superposition of these partial dynamical structure factors according to 
(13) yields S(k, w). The total dynamical structure factor for k along a twofold symmetry 
axis is shown in figure 11. Compared to the spec@al function. the factor k2 minimizes the 
intensities at small wavevectors and the thermal occupation factor (n(w)+l) /w (propottional 
to O J - ~  at low temperatures) dampens the intensities at high frequencies. Therefore, intense 
inelastic peaks are found only around the most intense Bragg peaks. An enlarged version 
of the dynamical structure factor around the Bragg peak at Ik[ = 26(2n/a) = 2.73A-' is 
shown in figure I I(*). This shows that it will be very difficult todetect longitudinal inelastic 
excitations at wavevectors differing by more than 0.3 A-' from a r point. For the transverse 
modes the damping effect is weaker due to the lower eigenfrequencies. However, since the 
local maxima are quite sharply defined, the dispersion relations derived from S(k, U )  are 
almost identical to those derived from the peaks in the weighted spectral function f ( R ,  U) 
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Figure 11. (0)  Total dynamical svucltue factor S(k. w )  for longitudinal WlleCIive excitations 
propagating along a twofold symmetry direction. (b) Enlarged SeCtion of S(k. 0) around the 
Bagg peak at Ikl = 26.(2n/a) = 2.73A-I. See text. 

(which in the present case is almost identical to f"(k. w)) .  In this respect quasicrystals are 
similar to periodic crystals and different from glasses, where the multiplication of a broad 
spectral function with the thermal occupation function shifts the peak in S(k, w )  to lower 
frequencies compared to those in f ( I C .  o) 135,361. 
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Figure 13. Vibrational density of states n(w) for amorphous AI-Zn-Mg. 
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8. Confined vibrational modes 

J Hafner and M KrajE 

The character of the eigenmodes is characterized by the participation ratio P(o) ,  see (4). 
Figure 12(a) shows the participation ratio P (0) for the eigenmodes of the 2/1 approximant 
calculated by exact diagonalization of the dynamical matrix. For comparison, figure 12(b) 
shows the participation ratio of a 688-atom model of an AI-Zn-Mg glass, prepared by a 
molecular dynamics quench and a subsequent steepestdescent energy minimization (details 
of the modelling algorithm, together with the atomic and electronic structure of amorphous 
AI-Zn-Mg, are described in 1411). The vibrational density of states of the glass (figure 13) 
covers about the same range of frequencies as that of the quasicrystal, but lacks the peaks 
corresponding to the stationary modes of the quasicrystal. The partial Dos shows a broad 
overlap between the AI(Zn) and Mg vibrations. The distribution of the participation ratios 
is distinctly different in the quasicrystalline and amorphous phases. In the glass, the 
participation ratios are scattered between P(o)  - 0.3 and P(o)  - 0.5 at intermediate 
frequencies and tend to zero at the upper edge of the band. The existence of high-frequency 
localized modes is easily understood in terms of strained local configurations characteristic 
for a disordered solid. Characteristically, the high-frequency modes are localized in sites 
with a high atomic level pressure [42,43]. In addition, a few low-frequency localized 
modes are detected. The existence of low-frequency localized modes and the importance 
of these modes for understanding the interesting low-temperature thermodynamic properties 
of glasses have been much-debated subjects [44,45]. The ‘soft-potential model’ for the 
origin of the localized modes enjoys a long-lived popularity, although attempts to associate 
the local modes with well defined atomic arrangements have met with only limited success 
tal. 

Compared to the amorphous alloy, the participation ratios of the eigenmodes of the 
quasicrystal are more widely scattered and localized modes (defined somewhat arbitrarily 
by P c Pc, Pc = 0.2 for the 688-atom model) are found over the entire frequency range. 
For the quasicrystal we can establish a precise relation between local deviations from the 
icosahedral packing and at least some of the localized modes. Figure 14(a) shows the 
displacement pattem of the fifth eigenmode. Atoms are drawn at the equilibrium positions 
of the relaxed displacively modulated quasicrystal, arrows show the projections of the 
eigenvectors at each atomic site on the ( x ,  y) plane. Figure 14(b) shows for comparison the 
idealized structure. The mode considered i s  one out of a group of eight eigenstates labelled 
‘A’ in figure 12(a). In the ideal quasicrystal these modes would be degenerate, but the 
displacive modulation lifts the degeneracy. In these eigenmodes the atomic displacements 
are largest in four groups of eight atoms each. These 32 atomic positions are just the 13-fold 
coordinated sites in the Ul approximant (see figure 14(b)). 

Note that, even though a quasicrystal has icosahedral point-group symmetry, this does 
not mean that all atomic sites have full icosahedral symmetry. Ideal icosahedral site- 
symmetry is characterized by coordination number twelve and a fivefold symmetry axis 
passing through the site. The local deviations from icosahedral symmetry in crystals, 
glasses and quasicrystals may be described in terms of a network of disclination lines 
[471. ‘S4’ and ‘S6’ disclinations are defined to lie along bonds that are surrounded by four 
or six tetrahedra instead of five. These disclination lines characterize local deviations from 
icosahedral symmetry that exist even in ideal infinitely extended quasicrystals. They are not 
related to the phason defects introduced in the commensurate approximants. The 13-fold 
coordinated sites in a Penrose-lattice with Henley-Elser decoration (they are situated in 
mid-edge and venex positions of the oblate rhombohedra) are links of seven (four S4 and 
three S6) respectively three (one S4 and two S6) disclinations. The high local density of 
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Figure 14. (U) Projection of Ihe relaxed (displacively modulated) lattice of the 2/1 appmximant 
on the ( x .  y )  plane The arrows show the eigenvectors of the localized fifth eigenmode (labelled 
‘A’ in figure 12). The diameter of the circles representing ule atoms is scaled with the z 
coordinate. (b)  The 13-fold coordinated sifes parlicipating in lhe locali2ed modes. 

disclination lines indicates a high degree of frustration (in the sense of a deviation from ideal 
icosahedral packing). A high density of S4 disclinations is associated with a locally reduced 
packing density; it is therefore natural that the localized eigenstate is a low-frequency mode. 
Similar correlations between localization and topological frustration may be established for 
other groups of the eigenstates. For example, the modes labelled ‘B’ and ‘C’ in figure 12(a) 
are again associated with 13-fold coordinated sites. CeItain high-frequency localized states 
(labelled ‘D’ and ‘ E  in figure 12) are associated with a high density of S6 disclinations. 
All Mg sites in the quasilattice have coordination Z 2 14, those in the body diagonal of 
the prolate rhombohedra have 2 = 16 and link four S6-disclinations. A high local density 
of S6 disclinations indicates a locally increased packing density and it is plausible that this 
leads to a localized high-frequency mode. This is shown in figure 15. In the eigenmode 
1902 (ho = 40.65 meV, P (0) = 0.162). only two pairs of atoms show large displacements 
from their equilibrium sites. These atoms are Mg atoms placed along the body diagonal 
of the prolate rhombohedra with coordination number Z = 16. Other sites of this type are 
involved in other localized high-frequency modes. 

Although we have called eigenmodes with a low participation ratio ‘localized‘ modes, 
these are not localized modes in a classical sense with an exponentially decaying envelope. 
According to Conway’s theorem, the local configurations supporting these modes are 
repeated infinitely often in the quasiclystalline lattice. Hence the same eigenmode appears 
at many places in the quasilattice: it is not localized in the sense that the amplitude decays 
exponentially with distance from the centre of the mode, but it  is confined to a well defined 
supporting structure. For this reason it appears to be more appropriate to speak of ‘confined‘ 
eigenstates. We note that, for two different tight-binding models on 3D Penrose lattices such 
confined eigenstates have been identified and discussed by Krajfi and Fujiwara [ 1 I]. 

According to Conway’s theorem, the number of confined modes should be proportional 
to the volume of the system. In an ideal infinite quasicrystal, the confined modes would 
be infinitely degenerate. In this context it is interesting to emphasize that the frequency 
of the most prominent confined modes is close to peaks or shoulders in the vibrational 
spectrum and that the height of these peaks increases with the order of the approximant. 
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Figure 15. ((1) Displacement pattern of a 
localired high-frequency mode (labelled 
’E‘ in figure 12). See text 0 5 10 15 20 

x t i l  

For the lowest-order approximants, the confined modes contribute only a few per cent of 
the height of the peaks. Most of the states at this frequency are stationary states associated 
with high-symmeny points. The relation between confined and stationary states deserves 
further investigation. 

We should also emphasize that the results obtained here refer only fo a low-order 
commensurate approximant With 688 atoms in the Ul approximant, there are 2064 
vibrational eigenstates. This is of the same order of magnitude as the number of eigenstates 
in the Krajti and Fujiwara one-band model of the 5/3 approximant to the 3D Penrose lattice 
with 2440 vertices. In the next generation of our model-the 3/2 approximan-there would 
be 8760 eigenstates. For such numbers, special techniques for diagonalizing very large 
matrices are required. Hence, for the time being, we cannot claim that confined eigenstates 
exist in infinite quasicrystals. However. the supporting structures of the confined states 
are not a consequence of the commensurate approximation, but exist in larger models and 
in infinite quadcrystals as well, and the existence of a variety of confined states may be 
expected. 

9. Summary 

We have presented the first investigation of collective excitations for a realistic model 
of a quasicrystal, using exact diagonalization of the dynamical matrix for low-order 
commensurate quasicrystals and using recursion calculations of the spectrum for very large 
models. 

Our calculations show the existence of well defined propagating longitudinal and 
transverse modes (‘phonons’) around the quasiperiodically distributed r points. The slope of 
the dispersion relations is independent of the direction of the wavevector and for transverse 
modes is also independent of the direction of the polarization in the plane perpendicular 
to the wavevector. This shows that, as expected. the quasilattice is elastically isotropic. 
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At higher frequencies, we predict stationary vibrational modes around the special high- 
symmetry points of the reciprocal quasilattices. These stationary modes are associated with 
peaks (‘quasi-van-Hove singularities’) in the density of states. 

These results are in very good agreement with recent inelastic neutron-scattering 
data on icosahedral Al-Cu-Li (calculations for this alloy are in progress). The phonon 
dispersion relations also show striking analogies with the dispersion relations of electrons 
in quasicrystals [10,411. 

We have shown that strictly localized (‘confined’) eigenstates can exist in commensurate 
quasicrystals and we have established a clear correlation between the confined modes and 
local topological frustrations of the ideal icosahedral packing. The supporting structure8 of 
the confined modes are not induced by the commensurate approximation; they exist also in 
the infinite quasicrystal. Hence confined modes may be expected even in real quasicrystals. 
Our results point to a correlation between the confined eigenstates and the stationary modes, 
whose precise nature must be left to future investigations. 

Acknowledgments 

This work has been supported by the Fonds zur Fijrderung der wissenschafllichen Forschung 
in Ostemich (Austrian Science Foundation) under project no. P8 148-TEC. 

References 

[I] Sieinhardt P J and Ostlund S (eds) 1987 The Physics of Quasicrysruls (Singapore: World Scientific) 
[2l Gardner M 1977 Sei. Am. 236 1 IO 
[3] Kohomoto M and Sutherland B 1986 Phys. Rev. B 34 3849 
[41 Ashraff J A and Stinchwmte R B 1989 Phys. Rev, B 39 2670 
[SI Benoit C 1989 J .  Phys.: Condens. Mofrer I 335 
[61 Benoit C. Poussigw G and Amuragh A 1990 J.  Phys.: Condem. Mnrfer 2 2519 
171 Tsunenugu H, Fujiwara T. Ueda K and Takihiro T 1991 Phys. Rev. B 43 8879 
[SI Paiel H and Sherringion D 1989 Phys. Rev. B 40 11 185 
[SI Ashraff J A. Luck J M and Stinchcomte R B 1990 Pkys. Rev. 841 4314 

[IO1 Hafner J and KrajEf M 1992 Phys. Rev. Len. 68 2321 
[Ill KrajEf M and Fujiwara T 1988 Phys. Rev. B 38 12903 
I121 Hafner J and Krajfi M 1993 Phys. Rev. B 47 1084 
[I31 Suck J B. Bretscher H. Rudin H. GNner P and Giintherodt H J 1987 Phys. Rev. Len. 59 102 
[I41 Suck I B. Janot C. de Boissieu M and Dubosi M 1990 Phonom ‘89 ed S Hunklinger, W Ludwig and G 

[I51 Goldman A 1, Slassis C. Bellisent R, Moudden H. pyka N and Gayle F W 1991 Phys. Rev. B 43 8763 
Cl61 Goldman A 1. Stassis C, de Boissieu M. Cunai R, Janot C, Bellisent R, Moudden H and Gayle F W 1992 

[I71 Quillichini M. Heger G, Hennion B. Lefebvre S and Quivy A 1990 J. Physique (Puris) 51 1785 
[I81 Elm V and Henley C L 1985 Phys. Rev. Left. 55 2883 
I191 Bak P 1986 Phys. Rev .  Lerr. 56 861 
[20] Henley C Land Elser V 1986 Phii. Mug. Le# 53 L59 
[211 Heine V. Haydock R. Bullet D W and Kelly M J 1980 SoiidSlufe Physics 35 (New York: Academic) 
I221 Hafner J and Krajtl M 1993 Europhys. Leu 21 31 
[U] KrajCf M and Hafner J 1992 Phys. Rev. B 46 10669 
[241 MihalkoviE M and Mrako P 1992 J .  Non-Crysr. Solids 143 225 
[251 Bergmann G, Waugh J L T and W i n g  L 1957 Acta Ciysrullo~r. 10 254 
1261 Mukhopadhyay N K. Ishihara K N. Ranganathan S and Chaitopadhyay K 1991 A m  Mefuli. 39 1151 
[271 Jansen T 1988 Qusicfysfulline Muf~eriuls ed C lanot and J M Dubois (Singapore: World Scientific) p 327 
[28] Hafner J 1987 From HumilIonims ro P h e  Dingrum (Berlin: Springer) 
[291 Niizeki K and Akamatsu T 1990 J .  Phys.: Condens. Mmer 2 2759 

Weiss (Singapre: World Scientific) p 576 

Phys. Rev. B 45 10280 



2510 J Hafner and M KrajcY 

[30] Bell R J and Dean P 1972 Amorphour Marerials ed R W Douglan and B Ellis (New Y o k  Wiley) p 443 
1311 Lovesey S and SpringerT(eds) 1977 DynamicrqfSolidsandLiquids byNeurronScaIrering(Ber1in: SpMger) 
1321 Maradudin A A. M m l l  E W. Weiss G W and lpatova I P 1971 Theory of Lullice Dynamics in the Harmonic 

1331 Bhatia A B and Thorton D E 1970 Phys. Rev. B 2 3004 
[34] Lucchini M U and Nex C M M 1987 1. Phys. C: SoiidSrale Phys. 20 3125 
I351 Hafner J 1983 J.  Phys. C: Solid Srure Phys. 16 5773 
[XI Hafner J 1983 Phys. Rev. B 27 678 
[371 Los J and Jansren T 1990 J .  Phys.: Con&ns. Marrer 2 9553 
L381 Jan01 C. de Boissieu M, D h i s  J M and Pannetier 1 1989 J. Phys.: Condem. Marrer I 1029 
[391 Suck J B 1993 Pmc. 8rh Inrern. Conference on Liquid and Amorphous Merals ed J Hafner U. Non-CrysI. 

1401 Henley C L 1987 Comm. Condens. Morrer Pkys. 13 59 
Bacon G E 1972 Acta CtystaUogr. A 28 357 

1411 Hafner J and Kraj6f M 1993 Phys. Rev. B in print 
1421 Halm J 1983 Pmc. Zndlnr. Con5 on rhe Srruclure ofNoncrysralline Solids ed P H Gaskell. J M Parker and 

E A Davis  (London: Taylor and Francis) p 539 
[43] Srolovitz D. Egami T and Vitek V 1981 Phys. Rev. B 24 6936 
I441 Karpov V G. Klinger M I and IgnaIiev F N 1983 W. Ekp. Tkor. Fiz. 84 760 (Engl. IransI. Sov. Phys.JETP 

I451 Buchenau U. Galperin Yu M. Gurevich V Land Schober H R 1991 Phys. Rev B 43 5039 
1461 Laird B B and Schober H R 1991 Phys. Rev. Len. 66 636 

Schober H R, Oligschleger C and Laird B B 1993 Proc. 8rh b l .  CO@. on Liquidand Amorphous Merais ed 

[47] Nelson D R 1983 Phyr. Rev. B 28 5515 
Nelson D R 1990 Solid Slate Physics 41 I 

Approximarion (New York Academic) 

Solids (in print)) 

57 439) 

J Hafner ( J .  Non-Crysr. Solids (in print)) 


